

TP-3 Création d'un réseau

1) Préparation des hôtes

1.1) Clonage des VM

Faite clic droit sur la VM que vous voulez cloner, puis cliquez sur "Cloner"

Ensuite renommez votre VM et cliquez sur "Suivant" puis sur "Finish"

1.2) Réseau interne

Pour mettre votre VM en réseau interne vous devez aller dans "**Configuration**" en faisant clic droit sur la VM

Après allez dans Réseau et dans "Mode d'accès réseau" sélectionner "Réseau interne"

Cliquez sur « Advanced » et sélectionnez « Allow Vms »

Faite ceci pour les 2 VM et elles seront en réseau interne

2) Mise en réseau des hôtes

2.1) Configuration VM Windows 10

Dirigez-vous dans "Paramètres" puis dans "Réseaux et internet"

Ensuite allez dans "Propriétés"

Cherchez "Paramètres IP" puis cliquez sur "Modifier" et sélectionnez "Manuel"

Activez IPv4 et rentrez les informations de votre adresse IP, puis cliquez sur "Enregistrer"

2.2) Vérification

On peut vérifier l'adresse IP au même endroit que pour la changer

Paramètres IP

Attribution d'adresse IP : Manuel

Adresse IPv4: 192.168.31.1

Longueur de préfixe sous-réseau 24

IPv4:

Passerelle IPv4: 192.168.31.255

Modifier

Mais aussi dans le CMD avec la commande "ipconfig"

2.3) Configuration VM Ubuntu

Cliquez sur les applications et cherchez le terminal, puis lancez-le

Ensuite entrez la commande "sudo -s" pour devenir administrateur

zakrzewski@VMZakrzewski:~\$ sudo -s [sudo] Mot de passe de zakrzewski : root@VMZakrzewski:/home/zakrzewski#

Après être devenu administrateur, entrez la commande "hostname" pour connaître le nom de la machine

root@VMZakrzewski:/home/zakrzewski# hostname VMZakrzewski

On peut aussi voir le nom de la machine ici :

root@VMZakrzewski:/home/zakrzewski#

Donnez le nom« Linux31 » à la machine avec la commande « hostname Linux31 »

root@VMZakrzewski:/home/zakrzewski# hostname Linux31 root@VMZakrzewski:/home/zakrzewski# hostname Linux31

Ensuite utilisez la commande « nano /etc/hostname » pour entrer dans le fichier hostname avec nano

Le nom de

la machine n'a pas changé donc il faut le changer manuellement, pour quitter le fichier faite **ctrl+x** puis appuyer sur **o** (y en anglais) et sur **entrée** car on ne veux pas modifier le dossier

Faite la même chose avec la commande « nano /etc/hosts »

```
GNU nano 4.8
                                      /etc/hosts
                                                                         Modifié
                localhost
127.0.0.1
127.0.1.1
                Linux31
       ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
                                               ^K Couper
^G Aide
               ^O Écrire
                               ^W Chercher
                                                                 Justifier
               ^R Lire fich.
                               ^\ Remplacer
                                                  Coller
^X Quitter
                                                                 Orthograp.
```

3) Configuration IP

3.1) Nom des cartes réseaux

Allez dans le **Terminal**, mettez-vous en **administrateur** puis tapez la commande **« ip addr show »**

```
root@VMZakrzewski:/home/zakrzewski# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defau
lt qlen 1000
        link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
        inet 127.0.0.1/8 scope host lo
            valid_lft forever preferred_lft forever
        inet6 ::1/128 scope host
            valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP g
roup default qlen 1000
        link/ether 08:00:27:ee:79:6d brd ff:ff:ff:ff:ff
```

3.2) Configuration IP Ubuntu

Allez dans les « Paramètres »

Activez la connexion Filaire puis allez dans les paramètres

Ensuite allez dans « IPv4 », sélectionnez « Manuel » puis rentrez les adresses

3.3) Configuration IP Debian 9 (sans interface graphique)

Changez le nom de la machine avec la commande « hostname Debian31 »

```
root@debian:~# hostname Debian31
root@debian:~# hostname
Debian31
```

Puis utilisez la commande « nano /etc/hostname » pour entrer dans le fichier hostname avec nano pour modifier le nom de la machine directement dans le fichier

Ensuite faite **ctrl+x** pour quitter le fichier, appuyer sur **o** (y en anglais) pour confirmer et sur **entrée** car on ne veux pas modifier le dossier

```
GNU mano 2.7.4 Fichier: /etc/h

127.0.0.1 localhost
127.0.1.1 Debian31

# The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters
```

Après avoir changer le nom de la machine utilisez la commande « nano /etc/network/interfaces » pour accéder aux éléments à modifier pour l'adresse IP

```
# This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

# The loopback network interface auto lo iface lo inet loopback

# The primary network interface allow-hotplug enp0s3 iface enp0s3 inet dhcp
```

Rentrez vos valeur, quitter et enregistrer


```
# This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

# The loopback network interface auto lo iface lo inet loopback

# The primary network interface allow-hotplug enp0s3 iface enp0s3 inet static address 192.168.31.3 netmask 255.255.255.0_
```

Pour vérifier si vos valeurs ont bien été prises en compte rentrez « ip addr show »

```
root@debian:"# ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
        valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1
000
    link/ether 08:00:27:9a:8e:a1 brd ff:ff:ff:ff:
inet 192.168.31.3/24 brd 192.168.31.255 scope global enp0s3
        valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fe9a:8ea1/64 scope link
        valid_lft forever preferred_lft forever
```

Si vous ne voyez pas vos valeurs, utilisez la commande « ifup enp0s3 »

4) Tests de communication

4.1) Désactiver le pare-feu Windows

Allez dans les **paramètres** puis recherchez « **pare-feu »** dans la barre de recherche et cliquez sur « **Pare-feu et protection du réseau »**

Désactivez le pare-feu dans chaque réseau

(1) Pare-feu et protection du réseau

Qui et ce qui peut accéder à vos réseaux.

Réseau avec domaine

Le pare-feu est activé.

🕯 Réseau privé (actif)

Le pare-feu est activé.

Réseau public

Le pare-feu est activé.

🖫 Réseau avec domaine

Réseaux d'un espace de travail liés à un domaine.

Réseaux avec domaine actifs

Non connecté

Pare-feu Microsoft Defender

Aide à protéger votre appareil sur un réseau avec domaine.

4.2) Requête ping

VM Windows 10 : <u>192.168.31.1</u> VM Ubuntu : <u>192.168.31.2</u> VM Debian 9 : <u>192.168.31.3</u>

Allez dans le **CMD** (Windows) ou le **Terminal** (Ubuntu) et utilisez la commande « **ping** » suivi de l'adresse IP de la machine avec laquelle vous voulez communiquer

```
C:\Users\Raphaël Zakrzewski>ping 192.168.31.2
Envoi d'une requête 'Ping' 192.168.31.2 avec 32 octets de données :
Réponse de 192.168.31.2 : octets=32 temps=4 ms TTL=64
Réponse de 192.168.31.2 : octets=32 temps<1ms TTL=64
Réponse de 192.168.31.2 : octets=32 temps<1ms TTL=64
Réponse de 192.168.31.2 : octets=32 temps<1ms TTL=64
Statistiques Ping pour 192.168.31.2:
Paquets : envoyés = 4, reçus = 4, perdus = 0 (perte 0%),
 🚅 ée approximative des boucles en millisecondes :
   Minimum = 0ms, Maximum = 4ms, Moyenne = 1ms
C:\Users\Raphaël Zakrzewski>ping 192.168.31.3
Envoi d'une requête 'Ping' 192.168.31.3 avec 32 octets de données :
Réponse de 192.168.31.3 : octets=32 temps<1ms TTL=64
Statistiques Ping pour 192.168.31.3:
 Paquets : envoyés = 4, reçus = 4, perdus = 0 (perte 0%),
  ée approximative des boucles en millisecondes :
   Minimum = 0ms, Maximum = 0ms, Moyenne = 0ms
```

On peut voir que les **Paquets envoyés** ont tous bien été **reçus** par les autres machines avec une **perte de 0** %

Ce qui signifie que les VM communiquent entre-elles.